일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- out-of-order
- ERROR RESPONSE
- stepmotor
- QoS
- Multiple transaction
- T flip flop
- APB3
- 임베디드시스템
- 스텝모터
- ordering model
- FPGA
- Multiple outstanding
- AXI3
- single copy atomic size
- SoC
- cacheable
- atomic access
- FGPA #반도체설계 #verilog #시프트레지스터 #uart
- tff
- ABMA
- 카운터
- 레지스터슬라이스
- Low-power Interface
- Interoperability
- AMBA
- Verilog
- 펌웨어
- AXI4
- STM32
- 구조적모델링
Archives
- Today
- Total
CHIP KIDD
[ARM] I2C 통신을 이용한 DS3231 RTC(Real Time Clock) 구현 본문
I2C를 이용해서 DS3231으로 부터 시간값을 얻자,
얻은 값을 OLED에 송출하기 (이건 SPI)
/*
* ds3231.c
*
* Created on: Mar 22, 2021
* Author: kccistc
*/
#include "ds3231.h"
I2C_HandleTypeDef *hi2c;
void DS3231_Init(I2C_HandleTypeDef *I2C_Handler)
{
hi2c = I2C_Handler;
}
void I2C_Transmit(uint8_t devAddr, uint8_t memAddr, uint8_t *pData, uint16_t Size )
{
HAL_I2C_Mem_Write(hi2c, (devAddr<<1), memAddr, 1, pData ,Size, 100);
}
void I2C_Receive(uint8_t devAddr, uint8_t memAddr, uint8_t *pData, uint16_t Size)
{
HAL_I2C_Mem_Read(hi2c, (devAddr<<1), memAddr, 1, pData ,Size, 100);
}
uint8_t DECtoBCD(uint8_t dec)
{
return (((dec/10)<<4) | (dec%10));
}
uint8_t BCDtoDEC(uint8_t bcd)
{
return (((bcd>>4)*10) + (bcd & 0x0f));
}
void DS3231_SetTime(DS3231_TIME sTime)
{
uint8_t setTime[3];
setTime[0] = DECtoBCD(sTime.sec);
setTime[1] = DECtoBCD(sTime.min);
setTime[2] = DECtoBCD(sTime.hour);
I2C_Transmit(DS3231_ADDR, REG_ADDR_SEC, setTime, 3);
}
void DS3231_SetDate(DS3231_DATE sDate)
{
uint8_t setDate[4];
setDate[0] = DECtoBCD(sDate.day); //DayOfWeek
setDate[1] = DECtoBCD(sDate.date);
setDate[2] = DECtoBCD(sDate.month);
setDate[3] = DECtoBCD(sDate.year);
I2C_Transmit(DS3231_ADDR, REG_ADDR_DAY, setDate, 4);
}
void DS3231_GetTime(DS3231_TIME *sTime)
{
uint8_t getTime[3];
I2C_Receive(DS3231_ADDR, REG_ADDR_SEC, getTime, 3);
sTime -> sec = BCDtoDEC(getTime[0]);
sTime -> min = BCDtoDEC(getTime[1]);
sTime -> hour = BCDtoDEC(getTime[2]);
}
void DS3231_GetDate(DS3231_DATE *sDate)
{
uint8_t getDate[4];
I2C_Receive(DS3231_ADDR, REG_ADDR_DAY, getDate, 4);
sDate -> day = BCDtoDEC(getDate[0]);
sDate -> date = BCDtoDEC(getDate[1]);
sDate -> month = BCDtoDEC(getDate[2]);
sDate -> year = BCDtoDEC(getDate[3]);}
void DS3231_SetUartDateTime(uint8_t uartRxData)
{
static uint8_t uartRxBuff[50] = {0,};
//uint8_t uart2RxData;
static uint8_t tail=0;
int dateNum = 0, timeNum = 0;
if (uartRxData == ';')
{
uartRxBuff[tail] = 0;
tail = 0;
//int strncmp(const char* str1, const char* str2, size_t n);
if (strncmp("SETDATE", &uartRxBuff[0], 7) == 0)
{
DS3231_DATE tempDate;
//SETDATE20210322;
dateNum = atoi( &uartRxBuff[9]);
//dateFlag = 1;
tempDate.year = dateNum / 10000;
tempDate.month = dateNum / 100 % 100;
tempDate.date = dateNum % 100;
DS3231_SetDate(tempDate);
//dateFlag = 0;
}
else if (strncmp("SETTIME", &uartRxBuff[0], 7) == 0)
{
DS3231_TIME tempTime;
//SETTIME142030;
timeNum = atoi( &uartRxBuff[7]);
//timeFlag = 1;
tempTime.hour = timeNum / 10000;
tempTime.min = timeNum / 100 % 100;
tempTime.sec = timeNum % 100;
DS3231_SetTime(tempTime);
//timeFlag = 0;
}
}
else
{
uartRxBuff[tail] = uartRxData;
tail++;
}
}
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* <h2><center>© Copyright (c) 2021 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <strings.h>
#include "../dev/ds3231.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int __io_putchar(int ch)
{
HAL_UART_Transmit(&huart2, &ch, 1, 100);
return ch;
}
uint8_t uart2RxData;
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if (huart->Instance == USART2)
{
DS3231_SetUartDateTime(uart2RxData);
HAL_UART_Receive_IT(&huart2, &uart2RxData, 1);
}
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_I2C1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
DS3231_Init(&hi2c1);
HAL_UART_Receive_IT(&huart2, &uart2RxData, 1);
DS3231_TIME myTime;
DS3231_DATE myDate;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
printf("Hello stm32\n");
myDate.year = 20;
myDate.month = 1;
myDate.date = 20;
myDate.day = 2;
myTime.hour = 01;
myTime.min = 10;
myTime.sec = 30;
DS3231_SetDate(myDate);
DS3231_SetTime(myTime);
while (1)
{
DS3231_GetDate(&myDate);
DS3231_GetTime(&myTime);
printf("20%02d-%02d-%02d %02d:%02d:%02d\n",
myDate.year, myDate.month, myDate.date,
myTime.hour, myTime.min, myTime.sec);
HAL_Delay(1000);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 4;
RCC_OscInitStruct.PLL.PLLN = 100;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
'전기전자 > ARM' 카테고리의 다른 글
Queue 자료구조 구현 (0) | 2021.05.06 |
---|---|
[ARM] 엘레베이터 프로젝트 - SPI 통신을 이용한 OLED 구현 (0) | 2021.03.18 |
[ARM] 엘레베이터 프로젝트 - EXTI 외부인터럽터 / 포토 인터럽터 센서 이용 (0) | 2021.03.18 |
[ARM] 엘레베이터 프로젝트- Step Motor 회전속도 및 방향 제어 (0) | 2021.03.16 |